企业新闻

  第二十六条建设单位、业主单位、物业服务企业等相关单位应当向电信业务经营者平等开放建筑规划用地红线内已有的通信设备间、电信间、管道和线缆等设施,为光纤到户改造提供便利条件,不得违规收取任何费用。

  其中,微信、QQ等互联网通讯工具的兴起,不断抢占行业市场。BAT互联网更是将游戏、在线教育、视频、零售、金融、物流等全部纳入网络蓝海,悄然取代着传统基础运营商。在市场经济当道的今天,秒速时时彩基础运营商早已失去了基本的优势。

  2018年11月14日,海南海口,2018国际足球友谊赛前瞻,中国男足训练备战。【详细】

  这是11月10日航拍的巴布亚新几内亚首都莫尔兹比港。11月15日至21日,习主席将对巴布亚新几内亚、文莱、菲...【详细】

  结合当前全球信息技术与制造业融合发展的趋势,谈谈对德国工业4.0一些认识和感受,概括起来就是四个基本问题,德国工业4.0:为什么?是什么?如何看?怎么干?这是一个内部的研讨会,我谈谈自己个人的一点学会体会,不代表任何组织,不对之处请大家批评指正。

  ——在企业实践方面。提升企业核心竞争力是所有产业战略规划的出发点和落脚点,对中国如此,对德国也是如此。西门子、博世、SAP等从各自的角度提出一些能够体现工业4.0特征的示范工厂和企业,其在企业管理、业务模式和生产方式等方面开展一系列创新,这既是德国工业4.0的方向,也是中国两化融合的方向。事实上,国内企业在这些方面也做了一些积极探索,家电、服装、家具等行业正形成以大规模个性化定制为主导的新型生产方式,青岛红领、维尚家具、小米科技等一批创新型通过建立新的生产模式实现了逆势增长。工程机械、电力设备、风机制造等行业服务型制造业务快速发展,陕鼓、徐工、中联等企业全生命周期服务、总集成总承包服务日益成为企业利润的重要来源。汽车、钢铁、石化等行业企业间的协同供应链管理水平的不断提高,宝钢的与供应商之间建立了供应商早期介入(EVI)和及时生产(JIT)体系。这些企业转型的方向就是工业4.0所倡导的方向。

  五是服务的智能化。德国工业4.0中有一个非常重要的概念叫(服)务联网,他们把智能服务作为智能制造的一个核心内容。服务的智能化,既体现为企业如何高效、准确、及时挖掘客户的潜在需求并实时响应,也体现为产品交付后对产品实现线O)服务,实现产品的全生命周期管理。两股力量在服务的智能化方面相向而行,一股力量是传统的制造企业不断拓展服务业务,一股力量是互联网企业从消费互联网进入到产业互联网,如腾信提出微信、QQ未来连接的不仅是人,而且还包括人和设备、设备和设备、服务和服务、人和服务。这两股力量的胜利会师将不断激发智能服务领域的技术创新、理念创新、业态创新和模式创新。

  三是强化工业基础能力。针对关键基础材料、核心基础零部件、先进基础工艺、产业技术基础(“四基”),支持产业链上下游开展协同创新和联合攻关,系统解决研发、设计、材料、工艺、检测和产业化等关键问题。

  第九条省通信管理部门及其派出机构、县级以上人民政府有关部门、电信业务经营者、新闻媒体、基层群众性自治组织和有关社会组织应当通过各种形式普及通信设施建设与保护法规政策、电磁辐射等知识,向公众进行客观真实的宣传。

  [公告摘要]盛业资本(08469.HK)拟作价2.142亿元出售应收账款

  l、需要在主机商安装“广电悟空”APP,被叫是国内普通手机即可。

  (二)地下通信管线米;内河水底光(电)缆两侧各50米;内河港区内水底光(电)缆两侧水平延伸100米。

  罗常青与团队多年来在卫星移动通信技术上的创新,为海格通信的智能卫星/地面多模移动手持终端的问世提供了基础,这是中国支持首个民用自主卫星移动通信系统的手持终端,同时还成为天通一号01星完美升空的有力支撑。此外,罗常青与团队经过多年的技术攻关,完成了完全自主知识产权的F/TDMA体制船载动中通卫星通信系统的研制,技术性能处于国内领先水平。

  11月13日,西宁,三只小非洲狮在一起玩耍。近日,青藏高原野生动物园对外表示,该园繁育成活三只非洲狮。据了...【详细】

  论坛君想说,如今各种风云际会,让人应接不暇,这是一个群雄争霸愈发激烈的年代,身处其中,谁也逃不开躲不掉。都说排兵布阵有全局观,才能运筹帷幄,那么如今风向局势如何?谁将领跑?何去何从?做到心中有数都是非常重要的,期待这场盛会与你的相遇!

  ——生产设备之间的互联。从工业2.0到工业3.0时代的重要标志是,单机智能设备的广泛普及。工业4.0工作组把1969年第一个可编程逻辑控制器Modicon084的使用作为工业3.0的起点,其核心是各种数控机床、工业机器人自动化设备在生产环节的推广,我们可以把它理解为单机设备智能化水平不断提升并广泛普及推广。工业4.0的核心是单机智能设备的互联,不同类型和功能的智能单机设备的互联组成智能生产线,不同的智能生产线间的互联组成智能车间,智能车间的互联组成智能工厂,不同地域、行业、企业的智能工厂的互联组成一个制造能力无所不在的智能制造系统,这些单机智能设备、智能生产线、智能车间及智能工厂可以自由的、动态的组合,以满足不断变化的制造需求,这是工业4.0区别与工业3.0的重要特征。

  三是建设和推广企业两化融合管理体系。将实施两化融合管理体系作为推进两化融合实现智能制造的重要抓手,推进两化融合管理体系标准的研制、发布和国际化,加强两化融合管理体系的试点应用和推广,率先培育一批专业的咨询、认定和培训服务力量。积极培育和规范第三方咨询、认定和培训服务市场。

  太赫兹通信是未来移动通信(Beyond 5G)中极具优势的技术途径,也是空间信息网络高速传输的重要技术手段,具有军民融合、协同发展的应用前景。中国太赫兹高速无线通信关键技术已经取得了重要突破,与世界技术水平基本同步。因此,进一步加大力度发展太赫兹高速通信技术,对于中国引领国际高速无线通信技术发展和未来移动通信标准化进程具有重要的战略意义。

  太赫兹波段(THz)是指频率在0.1~10 THz 范围内的电磁波,频率介于微波和红外波段之间,兼有微波和光波的特性,具有低量子能量、大带宽、良好的穿透性等特点,是大容量数据实时无线传输最有效的技术手段。太赫兹通信与微波通信相比,带宽大,信息传输容量高;载波频率高,能够有效穿透等离子体鞘套;波长短,易于实现小型化。与激光通信相比,其波束宽度适中,对平台稳定度和跟瞄要求较低。大气对太赫兹波的吸收较强,有利于实现空间保密通信。

  (1)频谱资源宽,太赫兹高速无线通信可选利用的频率资源丰富。(2)高速数据传输能力强,具备100 Gbit/s 以上高速数据传输能力。(3)通信跟踪捕获能力强,灵活可控的多波束通信,为太赫兹通信在空间组网通信中提供更好的跟踪捕获能力。(4)抗干扰/抗截获能力强,太赫兹波传播的方向性好、波束窄,侦查难度大;太赫兹信号的激励和接收难度大,具有更好的保密性和抗干扰的能力。(5)克服临近空间通信黑障的能力强,能有效穿透等离子体鞘套,可以为临近空间高速飞行器的测控提供通信手段。

  近年来,无线通信正面临有限频谱资源和迅速增长的高速业务需求的矛盾,传统频谱资源几乎耗尽。各种高速需求不断涌现,如目前已商用的二维全高清电视信号(Full-HD)的无压缩数据率为3.56 Gbit/s,更高分辨率的二维4K 高清电视信号速率是6 Gbit/s;而三维电视信号的速率为上述二维信号的2 倍,即3D-Full-HD 为7.12 Gbit/s,3D-4K 为12 Gbit/s。更有甚者,目前正在研发的超高清电视(S-HDTV)可能的数据率将可达到24 Gbit/s。随着用户对业务质量要求越来越高,无压缩或压缩率低的高清电视信号的传送也逐渐增多。如此高速率的数据传输目前主要依赖于光纤通信,但在一些临时的需要移动的场合,光纤通信就不太能胜任。例如:3D-Full-HD 体育赛事直播,摄像机的位置需要经常变动,因此需要实现从摄像机到电视制作中心的超高速视频信号的机动传送。这样的场合很难临时铺设光纤线路,而传统的微波点对点通信设备又不能支持几吉比特每秒甚至几十吉比特每秒的数据传输速率。在下一代的高速通信网中,对高速的点对点无线通信链路将具有极大的需求。

  随着电磁空间竞争日趋白热化,电磁频谱已成为一种极重要的战略资源,而太赫兹波是电磁空间唯一亟待开发利用的频谱资源,因此世界各国高度关注重视。此外,现有的无线通信技术已难以满足多功能、大容量无线传输网络的发展需求,迫切需要发展新一代高速传输的无线通信技术,发展天地一体化的高速信息网络。因此,太赫兹高速通信技术成为了目前世界各科技强国争先抢占的科学技术制高点。

  美国认为:太赫兹科学是改变未来世界的十大科学技术之一,陆海空三局、能源部、国家科学基金会等政府机构给予了大力支持,设立了太赫兹高速无线通信骨干网络建设相关计划。美国国防高级研究计划局(DARPA)开展了名为THOR 的研究计划(该计划包含研发和评估一系列可用于移动的Ad-Hoe 自由空间通信系统的技术),并投入大量经费研制0.1~1 THz 频段太赫兹通信关键器件和系统;2013 年提出了100 Gbit/s骨干网计划,致力于开发机载通信链路实现大容量远距离无线年美国预计其通信卫星将可能具备10 Gbit/s 量级的传输速率,2020 年将具备50 Gbit/s 以上的传输速率。

  欧盟第57 框架计划中启动了一系列跨国太赫兹研究项目,包括以英国剑桥大学为牵头单位的WANTED 计划、THz-Bridge 计划,欧洲太空总署启动的大型太赫兹Star-Tiger 计划。2017 年欧盟已经正式布局6G 通信技术,目前已初步定位于进一步的增强型移动宽带,峰值数据速率要大于100 Gbit/s,计划采用高于0.275 THz 以上的太赫兹频段,并且欧盟准备在2019 年的世界无线 THz 以上的太赫兹频段确认用于移动及固定服务。

  日本政府将太赫兹技术列为未来10 年科技战略规划10 项重大关键科学技术之首。日本电报电线 年在国际上首次研制出0.12 THz 无线 年成功用于高清转播,目前正在全力研究0.5~0.6 THz 高速率大容量无线通信系统。日本总务省规划将在2020 年东京奥运会上采用太赫兹通信系统实现100 Gbit/s 高速无线 月太赫兹通信国际标准小组将802.15 IGthz 升级为SGthz,可见太赫兹科学技术的研究已在全球范围内全面性地展开并得到了高度重视。

  自2006年日本分别实现120 GHz、10 Gbit/s 通信演示系统(被喻为“ 无线通信标志性成果”)以来,太赫兹通信得到了快速发展,已经成为全球各国的研究热点。已有多家机构开展了相应研究,包括德国固态物理研究所(IAF)、德国联邦物理技术研究院(PTB)、Braunschweig 大学、日本NTT、美国贝尔实验室、加拿大多伦多大学、法国IEMN、美国Asyrmatos 通信系统公司等。纵观近几年来太赫兹通信技术的发展历程及成果,它正逐步向更高速率、更高大气窗口频率以及低功耗与小型集成化和实用化方向发展。目前,太赫兹通信技术形成了基于微波光子学的光电结合方式、全固态混频电子学方式、直接调制方式这3 类针对不同的应用场景并行发展的态势。

  采用光电结合方式的太赫兹通信技术是较早发展的太赫兹通信系统方案,该方案需要2 个窄线宽的锁模激光器,利用光学外差法并通过单行载流子光电二极管(UTC-PD)转化成太赫兹信号,其调制方式是基于光学的马赫曾德尔调制器(MZM)的高速调制器,不仅可以实现幅移键控(ASK)和二进制启闭键控(OOK)二元调制,而且可以实现多进制正交幅度调制(MQAM)、多进制数字相位调制(MPSK)多元调制[1-2]。

  日本早在2006 年,在载波频率为0.12 THz 的单路通信系统中,通信速率达到10 Gbit/s[3];在2010 年,日本NTT 已研发出0.25 THz 室内通信实验系统,它的通信距离是0.5 m,通信速率已实现8 Gbit/s。

  近些年来,微波光子学中光电结合方式的太赫兹通信不断朝着超高速率方向发展,例如:2014 年法国国家科学研究院采用微波光子学的方法研制了在400 GHz 数据速率上高达46 Gbit/s 的THz 无线年都柏林城市大学和伦敦大学采用光梳状源实现了微波光子学方式的多载波太赫兹通信系统,进行了三载波10 Gbit/s 的正交相移键控(QPSK)太赫兹无线]。该系统优势在于:传输速率高,带宽利用率高;但是由于发射功率仅为微瓦级,并且系统体积和能耗均较高,虽然在地面短距离高速通信方面有优势,但难以适合应用于远距离空间信息网络系统。

  全固态混频电子学方式的太赫兹通信系统是利用混频器将基带或中频调制信号搬移到太赫兹频段。由于采用全电子学的混频器、倍频器等,射频前端易于集成和小型化。

  NTT 应用该系统在2008 年北京奥运会上进行了Full-HD 信号的传送,该系统可实现最大通信距离达3~4 km,其全电子系统可实现的通信距离为2 km。2009 年,系统中所有的光激性器件均换成了InP HEMT MMICs,该系统最大数据传输速率为11.1 Gbit/s,从而实现了大于800 m、10 Gbit/s 信号的无误传输。

  2010 年,NTT 实验室再次对该系统进行改进,新系统将抑制震荡的电阻片替换成新型鳍线正交模态收发转换器(OMT),并通过减小鳍线长度来实现对震荡的抑制。由于鳍线OMT 的使用,新的双向通信系统实现了10 Gbit/s 的双向数据传输率以及20 Gbit/s 的单向数据传输率。

  2011 年,德国弗劳恩霍夫应用固体物理研究所(IAF)、卡尔斯鲁厄理工学院(KIT)搭建了一套0.22 THz 无线 所示。在输出功率约为1.4 mW,采用16/64/128/256 正交幅度调制QAM、OOK 等调制方式时,实现12.5 Gbit/s、传输距离2 m 的通信演示实验,并完成太赫兹波在纯净大气、大雨和大雾天的衰减测试。2012 年,秒速时时彩平台他们对该系统进行了适当的系列改进,实现了15 Gbit/s、20 m 和25 Gbit/s、10 m 的通信演示实验[8-9]。2013 年,该研究所实现传输速率40 Gbit/s、通信距离1 km的无线通信世界新纪录,并在容量上实现了与光纤的无缝连接[10]。

  2015 年,加利福尼亚大学设计了一个非相干的140 GHz 收发器和一个采用65 nm 互补金属氧化物半导体(CMOS)技术的太赫兹发生器,集成了数据速率为2.5 Gbit/s 的太赫兹通信系统[11]。同年,加州大学伯克利分校采用65 nm CMOS 技术设计了一个240 GHz 的收发系统,实现了10 Gbit/s的数据速率,其最大数据传输速率可达16 Gbit/s[12]。

  2015 年,圣何塞州立大学采用了40 nm CMOS 的技术集成了210 GHzOOK 调制方式的无线通信系统,该系统能够实现了无差错的伪随机数据在1 cm 范围内的传输,传输速率为10.7 Gbit/s[13]。2016 年,德国伍珀塔尔大学提出了一种工作在240 GHz 的、全集成式直接转换正交发射机和接收机芯片组,该芯片组采用0.13 m SiGe 双极CMOS 工艺,最高通信速率可达到2.73 Gbit/s[14]。

  目前,该方式太赫兹通信系统具有体积小、易集成、功耗低的特点,不足之处在于本振源经过多次倍频后相噪恶化,且变频损耗大,载波信号的输出功率在微瓦级,因此该类系统需要进一步发展高增益宽频带功率放大器以提高发射功率。

  基于直接调制方式的太赫兹通信系统是近年来随着太赫兹调制器速率突破衍生发展的新一类通信系统[15-18]。这种通信方案的核心关键技术为高速调制器,需要实现太赫兹波幅度或相位德直接调制,其优势在于易于集成、体积小、灵活性大,可随意选择载波频率、太赫兹源功率,是可搭配中高功率太赫兹源实现10 mW以上功率输出的通信系统,可实现中远距离无线通信;不足之处在于目前太赫兹直接调制器还在研究中,还未突破10 Gbit/s 以上的太赫兹直接调制器。目前中国的电子科技大学已经掌握了该技术的核心方案,在国际上首次突破1 Gbit/s 的太赫兹直接调制器。

  中国政府各级部门十分重视太赫兹科学技术的发展,多个部委设立了太赫兹的相关研究计划。在国家的支持下,通过10 余年的发展,中国已经形成了一支以高校、科研院所为主体的太赫兹技术创新研发队伍。在太赫兹通信技术的方向上,电子科技大学等多家单位取得了较为突出的成果。

  20152016 年间,电子科技大学研制出了中国首套地面实时传输裸眼3D 业务的太赫兹通信系统,该系统工作频率为0.22 THz,并基于QPSK直接调制解调的方式,调制解调器采用0.22 THz 分谐波混频器,基带信号由码型发生器产生,经混频器中频端口馈入,调制到0.22 THz 载波频率后通过喇叭天线发射,已调信号经接收端混频器相干解调后送至误码分析仪进行误码分析。该系统可以实现10 Gbit/s 实时高速数据通信,有较好的误码性能[19],平均误码率小于10-6。该系统目前采用相干接收技术和大口径天线 km 距离传输,为高速中远距离无线通信打下了重要基础。

  2016 年,电子科技大学率先在国际上研制出了首套直接调制方式的太赫兹通信系统,并实现了千米级高清视频传输。该系统采用外部高速调制器直接对空间传输太赫兹信号进行调制,这种调制方式较现有的太赫兹通信方式,具有可灵活搭配中高功率太赫兹辐射源实现远距离通信的优点,有效突破了目前太赫兹通信系统中承载发射功率过低的问题。目前,该系统实现了0.34 THz 工作频率吉比特每秒的高清视频业务数据传输。

  另外,湖南大学在100 GHz 频段,用基于光电结合的方式实现高速实时数据通信。发射端采用光电二极管产生100 GHz 高频载波,接收端通过分谐波混频器进行相干解调,实现了速率达6 Gbit/s 的通信。上海微系统所采用量子级联激光器已实现了3.1 THz、传输速率为100 Mbit/s 的演示系统。

  系列性的成果为中国太赫兹通信技术积累了良好的核心元器件技术和系统的基础,也为空间太赫兹测控技术的研究打下了良好的基础。

  随着其他各国对太赫兹技术的加大投入,使得中国太赫兹通信技术发展面临着严峻的挑战,例如:欧盟2017 年成立的由德国、希腊、芬兰、葡萄牙、英国等跨国TERRANOVA 计划,明确提出研发超高速太赫兹创新无线、发展具有自主知识产权太赫兹通信技术建议及思考

  太赫兹通信技术是一个跨学科、跨专业的复合型技术领域,不仅需要通信技术的发展和突破,还需要高性能器件做支撑。因此,发展太赫兹通信技术必须要突破高性能器件技术,这亟需政府在研发上加大支持力度。特别是要在大功率GaN 太赫兹二极管的制备、大功率太赫兹固态电子放大器、高效率太赫兹倍频器、混频器、高速高效太赫兹调制器、高增益太赫兹天线、高灵敏太赫兹相干接收器件以及太赫兹高速基带等研究方向上加大投入,争取尽快取得突破,解决当前发展瓶颈。建议设立太赫兹通信关键器件的研究专项,重点支持高性能太赫兹固态电子学信号源、太赫兹放大器、太赫兹调制器、太赫兹接收器件等的研制,以尽快提高中国太赫兹通信技术核心元器件的研究水平,确保太赫兹高速无线通信系统元器件的自在可控。

  (2)构建全国开放的高性能太赫兹通信技术测试平台和大型全国性研究发展计划

  高性能太赫兹通信技术测试平台对于太赫兹通信用器件的测试、联试,对于发展太赫兹通信技术至关重要。然而,太赫兹测试设备价格昂贵,太赫兹通信系统的集成和联试又需要多台设备并行使用,单一研究单位难以搭建全面、高性能的测试平台。建议建立全国性的、开放的高性能太赫兹通信技术测试平台,形成完整的测试设备链路,为太赫兹通信技术的发展提供保障。

  中国多个部委都设立了与太赫兹通信技术相关的项目,但是支持力度仍远低于发达国家。针对目前中国太赫兹通信技术现有的发展水平与能力,建议由国家科技部门牵头设立一个大型的全国性太赫兹通信技术研究计划,进一步加大投入力度,中国将极有可能在该领域实现弯道超车,赶超国际先进水平。

  太赫兹通信具有高速数据无线传输能力、强通信跟踪捕获能力、高保密性等优点,是发展未来Beyond 5G 大容量数据最重要技术手段,是推动、发展新一代高速大容量无线通信的重要基础,对于发展中国先进科学技术,提升中国科技创新能力具有重大的战略意义。

企业新闻
2014 paidui.com All rights reserved 浙ICP备17008597号-1
秒速时时彩_首页_秒速时时彩计划_秒速时时彩专业版
网站地图